
FALLENSTEIN’S MONSTER
(BRIEF TECHNICAL NOTE)

NATE SOARES

This document is part of a collection of quick writeups of results from
the December 2013 MIRI research workshop, written during or directly
after the workshop. It describes work done mainly by Benja Fallenstein
and Nate Soares.

1. Problem statement 1
2. Marcello’s Waterfall 1
3. Parametric Polymorphism 2
4. The Procrastination Paradox 3
5. Subdividing the Goal 4
6. Baby Abomination 5
7. The Full Monster 6
8. Extensions 8
9. Discussion 8

1. Problem statement

Two known solutions to tiling agents (in the face of Löbian obsta-
cles) have significant disadvantages. Marcello’s Waterfall can only be
realized in nostandard models, while Parametric Polymorphism is con-
strained to deploy different amounts of “proof strength” at different
“successor depths”. These concerns are explained in detail below.

We present a third solution to the problem, created by grafting Mar-
cello’s Waterfall and Parametric Polymorphism together. Our solution
also works with a variant of Marcello’s Waterfall which is sound on the
standard natural numbers, described in a parallel note.

2. Marcello’s Waterfall

Briefly, Marcello’s waterfall works as follows:
1



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 2

Define ψ(n) to be “n does not encode a proof of contradiction in
ZF”.

Statement 1. ψ(n) := ¬ProofZF (n, p⊥q)

Then define a series of theories that each trust the following theories
for as long as they can trust ψ(n).

Statement 2. Ti := PA ∪φ {ψ(n)→ �Ti+n+pφq→ φ}

Marcello’s waterfall is the first theory in this sequence, i.e.

Statement 3. MW := T0

Assuming that ZF is consistent, ψ(n) will never be false. Thus, we
have a “waterfall” of theories that each trust the next theory. MW can
accept proofs in T1, T2, T3, and so on. Furthermore, MW is consistent.
(The proof of consistency is subtle, but essentially follows from the fact
that MW is far too weak to prove ZF inconsistent.)

We can use MW to build tiling agents (each of which accept proofs
proven by their successor agents). The condition for action in such
agents looks like this:

Statement 4. ā =⇒ MW ` ā→ G

Here, a denotes an action, ā denotes the execution of that action,
and G denotes some goal-state being achieved.

Consider an agent A0 reasoning in MW and considering the con-
struction of an agent A1 running T1. If A0 can verify that A1 only acts
when it has proved that its actions achieve the Goal, then because T0
can trust proofs in T1, A0 can deduce that the construction of A1 will
actually lead to achieving the goal. (See the Tiling Agents paper for
formal details.)

Although MW is a moral victory over the Löbstacle, it comes with
a few drawbacks. Among them is the fact that MW ` ∃n : ¬ψ(n).
MW has only nonstandard models (indeed, models where ZF is in-
consistent). This suggests that agents running MW may be unfit for
reality, wherein we believe ZF to be consistent.

Furthermore, MW succumbs to the procrastination paradox, which
will be described later.

3. Parametric Polymorphism

Briefly, parametric polymorphism is an extension of PA (augmented
with a new symbol κ) defined as follows:

Statement 5. PP := PA ∪φ {κ > 0→ �PPpφq→ φ[κ \ κ−]}



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 3

In other words, whenever κ is positive PP is willing to trust PP-
proofs with one caveat: If shown a PP-proof of φ, PP can deduce the
statement φ[κ \ κ−] (φ with all instances of κ replaced by κ− 1).

We can construct tiling agents using PP in a world with discrete
timesteps. Such agents trust proofs made by their successors, with the
caveat that when their successor proves an action safe for κ steps the
parent concludes that the action is actually safe for κ− steps.

In order to express this, we use a predicate G(t) expressing that the
goal has been achieved at timestep t. The condition for action then
looks soething like this:

Statement 6. ā =⇒ PP ` ā→ ∀t ≤ κ : G(t)

We require that subagents constructed by PP agents don’t start run-
ning until the following timestep (and that PP agents know this). Then
a PP agent is licensed to construct any other PP agent that proves its
actions safe for κ steps: from �PPpSafe(κ)q a PP agent can deduce
Safe(κ − 1), and can conclude that the action “build an agent which
is safe for κ− 1 steps and run it in the next step” is safe κ steps. (For
formal details, see the Tiling Agents paper.)

Parametric Polymorphism has standard models, and indeed {N , κ =
n} is a model of PP for all n. However, PP has its own problems.

Parametric Polymorphism gets “stronger” when reasoning about other
PP systems. Here, we only give an informal discussion.

PP itself does not trust the soundness of PA, for PP has no access
to the term κ. (PP may never deduce κ > 0.) However, when a PP
agent is reasoning about the safety of its subagents, its reasoning looks
something like “Either κ is zero and this subagent will never run, or κ
is positive and I can prove φ about the subagent”.

The problem here is that conditioned upon κ being positive, PP can
use �PApφq→ φ for any φ not containing a κ. In other words, when a
PP agent is reasoning about the actions of its successor agents, it can
use PA+ 1 (PA plus a soundness schema for PA).

However, when PP agents are reasoning about their own actions,
they cannot condition upon κ being positive, and they can only reason
in PA.

As you may expect, when reasoning about sub-subagents, PP agents
can use PA + 2. In general, when reasoning about subagents n levels
deep, PP agents can reason in PA+n. This is strange: agents running
on PP can essentially deploy PA+ ω, but they can never deploy their
full strength. The amount of “proof strength” that a PP agent can
deploy depends upon what level of subagent it is reasoning about.



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 4

This is uncomfortable, to say the least. If we are comfortable with
PP deploying PA plus many soundness schemas it should be able to
use the strength of PA plus many soundness schemas when reasoning
about its own actions in the immediate timestep.

4. The Procrastination Paradox

The procrastination paradox occurs when an agent has a goal that
it delagates to its subagents ad infinum, such that the goal never gets
achieved. The paradox is that certain tiling agent architectures with
seemingly-sane conditions of action prove that this delegation is “safe”.

For example, consider a goal requiring that a button is pressed at
some point in time (it does not matter when). Imagine an agent rea-
soning I can either press the button myself, or build a trustworthy child
with the same goal. It’s not hard to see how such reasoning can lead
to an infinite chain of descendents, none of which actually press the
button.

The procrastination paradox is explained in detail elsewhere, for now
it suffices to know that Marcello’s Waterfall succumbs to the procras-
tination paradox. Parametric Polymorphism can be made to avoid the
paradox, but some new machinery will be required.

5. Subdividing the Goal

Parametric Polymorphism can avoid the procrastination paradox
with some clevel manipulation of the goal predicate. Naively, we might
try a goal predicate like

Example 1. G(t) = ∃u.b(u)

where b(u) denotes that the button b is pressed at timestep u. In-
tuitively, this goal requires that at every timestep the agent can prove
that there is some timestep when the button becomes pressed.

This proves too restrictive: the initial PP agent (unaware of whether
κ is positive) must press the button immediately, and so this goal is

no better than G(t) = b(0). This is a rather unsatisfactory solution to
the procrastination paradox, to say the least.

We can relax the goal somewhat to allow PP agents to construct
successors who must eventually achieve the goal by restructuring the
goal predicate as follows:

Example 2. G(t) = t > 7→ ∃u.b(u)

This allows seven timesteps before agents must prove that there is
a time at which the button is pressed. Which such a goal scheme we



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 5

can allow agents to build up to seven successors, the last of which
must actually make sure that the button becomes pressed. The human
programers, in dividing up the goal, must put a finite limit on the
allowed successor depth.

We would like to be able to express goals of the form ”successor
chains may be arbitrarily large, but must be finite”.

We can extend Parametric Polymorphism to allow it to express such
goals. Intuitively, we will do the following: instead of baking in a fixed
maximum successor depth, we will index goals using proof theoretic
ordinals and require that agents only build subagents which achieve a
verison of the goal function where the ordinals are decreased. Descents
from infinite ordinals may be arbitrarily large, but all such descents
must be finite (by the well-ordering of the ordinals).

This has the advantage that the human programmers are not ”spe-
cial” in that they subdivide the goal and the agent merely achieves the
goal. By assigning ordinals to subgoals, the agent can divide the goal
however it pleases (so long as the ordinals decrease). In this way, the
humans do not possess powers which the agent knows not: rather, they
merely sit one level higher than the agent on the ordinal stack.

The actual techinque will be outlined in another paper, and will not
be described in detail here. A similar technique will be used in Fallen-
stein’s Monster, but it is different enough that we delay explaining the
technique until later. For now it suffices to understand that Paramet-
ric Polymorphism can subvert the procrastination paradox by means
of indexing subgoals with ordinals.

6. Baby Abomination

Marcello’s Waterfall lives in a nonstandard universe and succumbs
to the procrastination paradox, but it does not suffer from any losses
of proof strength (that we yet know of). Parametric Polymorphism has
standard models and avoids procrastination, but loses proof strength as
its goals draw nearer. We present a third tiling agent by grafting Mar-
cello’s Waterfall onto Parametric Polymorphism in a way that achieves
most of the best of both systems.

First, we will coerce Marcello’s Waterfall into having nice behavior
by putting it into a world with (finite but not necessarily discrete)
timesteps.

We begin by noting that, though Marcello’s Waterfall is unsound,
it is “Π1 sound”. If a Π1 statement is not true then there is a Σ1

statement exhibiting its falsity which Marcello’s Waterfull can find.
Because the waterfall is consistent, it cannot prove false Π1 statements,



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 6

and is thus sound for Π1 sentences. (Furthermore, a result from the
December workshop described in a note parallel to this one describes
how a sound version of the waterfall can be constructed in which each
level merely shows the Π1 instances of the soundness schema for the
next level, rather than all instances, which is sufficient for our purposes
here.)

Second, we subdivide the goal G into G(t), where t is a timestep.
Now consider an agent with the following condition for action:

Proposal 3. ā =⇒ MW ` ā→ ∀t : G(t)

This agent only executes action a in the case that Marcello’s Wa-
terfall (MW ) derives that the execution of a results in the goal being
achieved on each timestep. Thus, for example, the goal “press the
button” might be expressed as

Example 4. G(t) = t > 7→ ∃u < t : b(u)

In other words, “After time seven, there is a proof that at some time
before t the button was pressed”.

In order for this to work, we require that there is only a finite amount
of computation allowed per timestep. (Otherwise, MW could find a
proof of inconsistency in ZF and use it to exhibit a nonstandard proof
that its successor will halt and press the button.) Assuming ZF is
consistent, MW can find no such proof with finite computation, and
thus MW can only find trustworthy proofs that there is a time when
the button is pressed.

This is a tiling agent that avoids the procrastination paradox so long
as humans have subdivided the goal. This is not a particularly satisfac-
tory solution, as you can hardly say you’ve solved the procrastination
paradox when you change the goal from ”press the button in some
timestep” to ”press the button before this timestep”.

We can do better.

7. The Full Monster

Before we exhibit the full monster, we must introduce some new
notation and make more explicit this idea of ”subdividing our goals”.

Firstly, we divide our goals into discretely many subgoals Goals,
which we denote by g. (Thus, we will quantify like ∀g ∈ Goals.) We
assume Goals is countable and that we have a fixed enumeration of the
goals.

Secondly, we assign each subgoal an ordinal describing the “post-
ponabilitiy” of the goal. Intuitively, this describes the successor depth
allowed when achieving the subgoal. It may, however, be an infinite



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 7

ordinal, thus allowing goals to be postponed for arbitrarily long (but
ultimately finite) amounts of time. We will write this as Ord(g). We
require that the range of Ord is restricted to countable ordinals, for
simplicity. We also require that the function Ord is “nice” in the fol-
lowing way:

Let U denote the Grothendeick universe corresponding to the small-
est inaccessible cardinal κ. We require that Ord must be absolute for
U . Formally, ZFC ` ∀α < κ : Ord(α) ↔ OrdU(α), where OrdU is
obtained by replacing all quantifiers ∀x and ∃x by ∀x ∈ U and ∃x ∈ U .
Intuitively, this requires that the behavior of Ord does not depend
upon the inaccessible cardinals in the universe.

Next, we introduce a predicate Achieves which takes a goal and a
natural number and indicates whether the given goal has been achieved
at the given timestep.

Then we introduce a predicate Inacc(α) which states that there ex-
ists some strictly increasing function from α onto inaccessible cardinals.

For example, when g is the goal requiring that the button be pressed,
we might have the following function expressing that g has been achieved
at time t:

Example 5. Achieves(g, t) = ∃n < t : b(n)

Finally, we are going to require that the agent not only execute an
action a, but exhibit a program c. This program takes goals as input
and gives as output natural numbers. This program will not actually
be run, but the agent must be able to prove that it halts when run on
any given goal.

We are now ready to graft a new arm onto the monster. Here is our
condition for action:

Proposal 6. (a, c) =⇒ MW ` ā→ ∀g : Achieves(g, c(g))
∧ZFC + Inacc ` ∀g ∈ Goals : Inacc(Ord(g))→ Halts(c(g))

Translated, the agent is licensed to execute action a and exhibit
program c whenever it meets the following two conditions:

(1) Marcello’s waterfall proves actions are only taken when each
goal g is achieved within c(g) timeusteps

(2) ZFC + Inacc proves that for each goal g, if there are indeed
Ord(g) inaccessible cardinals then c(g) halts.

Assuming c(g) halts at some standard time, it is easy to see that this
agent will take actions only when it knows that taking the actions will
cause the goals to be achieved before some standard time. Notice that
the proof that c(g) halts is done in ZFC, not the unsound MW.



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 8

Let’s take a look at how such agents can tile. Intuitively, a parent
agent A0 can only license the construction of a child agent A1 when
the parent trusts the child’s proofs that the goals will be achieved and
when the parent trusts that the child’s counter program will halt.
A0 is able to achieve trust that the goals will be achieved via Mar-

cello’s Waterfall. Furthermore, A0 can only conclude Inacc(Ord(g))→
Halts(c1(g)) when it trusts its child’s proof of the same. This trust
can only be achieved when the child exhibits a proof of Innac(β) →
Halts(c1(g)) for β < Ord(g).

This follows from the fact that for all φ absolute for U ,

Statement 7. ZFC ` �ZFC∀n ∈ N : p∀α : Inacc(α)→ φ(n̄)q→ ∀α :
Inacc(α+)→ φ(n)

Intuitively, ZFC can only ”unwrap” statements of the form�pInacc(β)→ φq
into Inacc(α) → φ when β < α. Thus, agents using the above condi-
tion for action only trust successor agents that prove they halt using
strictly less strength. By the well-ordering of ordinals, we conclude
that successor chains must be finite (even if they may be arbitrarily
large).

8. Extensions

Such an agent can be extended to allow its successors to make ob-
servation by allowing the program c to accept as input the observation
vector, so long as it can exhibit a proof that c halts on all possible
inputs.

9. Discussion

This system (Fallenstein’s Monster) has the same strength at all
timesteps when reasoning about which actions achieve which goals.
At the same time, it only approves of successor agent chains that use
progressively less power to prove that they will eventually achieve the
goals, in a manner that guarantees all goals will be achieved in some
finite amount of time.

Also, the nonstandardness of Marcello’s Waterfall is largely miti-
gated by requiring that the agent prove a Π1 statement and may
only use finite computation. Furthermore, we only need the sound-
ness schema to hold on Π1 formulas, which means that we can in fact
use the sound version of Marcello’s waterfall described in a parallel
note.

Overall, this agent combines most of the best properties of both
Marcello’s Waterfall and Parametric Polymorphism.



FALLENSTEIN’S MONSTER (BRIEF TECHNICAL NOTE) 9

Note that this agent is still not particularly pleasant (hence the
name). We do not recommend building such an agent: we merely
note that this agent is a technical improvement over both Parametric
Polymorphism and Marcello’s Waterfall.


